BASICS OF CAPACITORS

1. Capacitance of capacitors

Fig1 Basic structure of capacitor

A capacitor is so designed that a dielectric is sandwiched between two electrodes as shown in Fig. 1. The capacitance (C) is expressed as:

$$C = \varepsilon \frac{S}{d} \qquad \varepsilon = \varepsilon_r \varepsilon_o$$

$$\label{eq:respective} \begin{split} & \mathcal{E}r: \text{specific dielectric constant}. \\ & \mathcal{E}o: \text{dielectric constant of vacuum (8.85 \times 10^{-12} \text{F/m})} \\ & \text{d}: \text{distance between electrodes (m). S}: \text{electrode surface (m}^2) \end{split}$$

2. Ranges of capacitance and operating voltage of various capacitors

3. Characteristics of various capacitors

	Aluminum	Film	Tantalum	Niobium	Ceramic
Dielectric	Aluminum oxide (Al ₂ O ₃)	Polyester, polypropylene, etc.	Tantalum pentoxide (Ta_2O_5)	Niobium pentoxide (Nb ₂ O ₅)	Based on barium titanate, etc.
Specific dielectric constant	8~10	2.1~3.1	27	41	1500~15000 (barium titanate)
Shape	Screw terminal type, Snap mount type, Radial type, chip type	Dip type (main power), For SMD. case type	Chip type (main power) Dip type	Chip type	Chip type (main power), dip type
Advanta ges	 Cheap Small-size and large-capacity 	 Good characteristics Can be made for low- to high-voltage applications High reliability 	 Small and comparatively large capacitance Semi-permanent service life 	 Small and comparatively large capacitance Semi-permanent service life 	 Small-size (particularly multilayer types) No polarity
Disadva ntages	 Short service life in hot environment Large capacitance tolerance Polarity 	Large outside dimensions	 To be used with some voltage leeway Polarity 	 To be used with some voltage leeway Polarity 	Great changes in capacitance due to changes in temperature and DC voltage